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I. INTRODUCTION 

In this set of lectures I wish to present a rather pedagogical view 

of the multiperipheral and parton models for the description of high 

energy collisions. My point of view will be to provide some experimental 

basis for each of the models; then without building elaborate versions of 

either model or making the student suffer the tedious details involved, 

I will try to extract the physics which can be discussed and often 

understood in the framework of the models. 

Both of the models I have chosen describe extremely interesting 

physical phenomena at the same time as they suffer in detail from being 

too simple to provide a fully convincing description of the same phenomena. 

Since hadronic physics is almost characterized by such contradictions, 

one has learned to live with this unsatisfactory situation. 

The first topic of discussion will be the multiperipheral model. 

We’ll establish the basic equations of the model by studying the simplest 

possible version of it. Then we’ll’take some physical problems to apply 

our new knowledge to. We’ll look at predictions for the n particle cross 

sections o’,(s) and after that study inclusive processes in the model. 

Leaving that discussion we’ll look at the parton model and investi- 

gate some of its properties as explored in deep inelastic lepton scatter- 

ing. Then we’ll derive some results which follow by assuming that the 

partons are in fact good old quarks. These results are relevant for 

high energy neutrino experiments at NAL. 
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II. MULTIPERIPHERAL MODEL 

Peripheralism and Multiperipheralism 

We will first turn our attention to an honorable hadronic model 

which attempts to put together the physics of particle production to 

yield results about elastic scattering, inclusive processes, and other 

strong interaction collision phenomenon. The model is known as the 

multiperipheral model and is a generalization of the very basic idea 

of a peripheral or exchange process familiar in two body reactions. 

Our development will first touch on the physics behind the detailed 

model of production amplitudes involved in the multiperipheral concept. 

Then we’ll look into some of the neat properties of the multiperipheral 

integral equation and apply the lessons we learn to inclusive processes 

and other amusing physical problems. A selected (by me) set of 

experimental results which support the study of the multiperipheral 

model will be alluded to as I need them. 

Let’s recall the particle exchange idea which underlies almost 

everything we imagine to be true about collisions at high energies. 

Starting here and unless otherwise announced we shall deal with massive, 

isoscalar, scalar mesons which couple with a trilinear coupling constant 

g. The invariant amplitude for two-to-two scattering pA+ pA ‘-+ pH + pB’ 

(Fig. 1) depends on the two traditional invariants 
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.Q 5 (bA t- p,)' 

and j.- cp,- /)J$ 

(i) 

(2) 

If we evaluate the invariant amplitude T(s, t), then the elastic differential 

cross section is given by 

dqp,i) I x-L4,1) 2 
At -= 8Kc? I i 1 

and the total cross section is given via the optical theorem as 

o-&J = ’ 
A”‘“ld, at;, n,;) 

Im, Jj, la, t-o) ) 

wherepi=M 2 2 2 A , p B = MB and 

A Qz) = Cx +y-#- 4xy 

(3) 

(4) 

(5) 

is the standard flux factor. 

Our notation established, let us now imagine that the dynamics of 

T(s, t) is appropriately approximated by one scalar meson exchange of 

mass m (Fig. 2): 
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T[,*,i,) 7: $y+~,.j l 

(6) 

This simple amplitude has really only one VirtUe. . because of the meson 

propagator, d uel/dt decreases relatively rapidly away from forward 

scattering, t = 0, and this is in fact observed experimentally. The 

inverse power fall off is not a fast enough decrease to really account - 

for the experimental facts, but one can fudge that. Also this has a 

remarkably simple 0 T: oT =O, since there is no imaginary part to T. 

These small problems aside, the fall off in t means that large t values 

are damped out and that in the conjugate variable to &?, the impact 

parameter, large values of b are governing the structure of Tel. This 

is the peripheral idea: large space distances are involved in high energy 

scattering processes. The average nfrom the peripheral amplitude 

(6) is =m, so <b> = l/m which for the exchange of a pion would mean 

distances of = 1 fermi or on the periphery of elementary particles as 

conventionally viewed. 

Production amplitudes ‘become important to consider when one 

remembers the experimental fact that o elastic I ototal for pp collisions, 

for example, is about 17 - 20 % over a wide range of collision energies 

from the Brookhaven and CERN AGS (s = 60(GeV)2) through NAL 

(s = 800 (GeV)‘) to the ISR (s = 3000 (GeV)‘). This means that particle 

production plays the predominant role in high energy collisions. The 

multiperipheral model attempts to generalize the elementary peripheral 
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model to production amplitudes by ascribing simple particle exchanges 

(peripheral processes) to be the basic dynamical mechanism. Clearly 

this will be an approximation which is hard, if not impossible without a 

sturdy hadronic theory, to evaluate a priori. The results we*11 establish -- 

will have to be defended on their own. 

To see how to put these words into practice let’s look at the 2- 3 

amplitude (Fig. 3). T 2-3 (pA+ pB-* pt + p2 +p3) depends on five variables 

which may be chosen 

Q= QQ&3Y 

U?Ld -t , = ( $4 - +J2 ) t a .- c.ps .- @“. 

(7) 

(8) 

(9) 

In the peripheral spirit we imagine that for s, sl, s2 fixed (perhaps 

large) there will be considerable damping in tl and t 
2 

in the 2- 3 

amplitude T(s, s 1, s2, ti, t2 ) and that peripheral exchanges across these 

momentum transfers may yield a good approximation to the amplitude 

(Fig. 4). {In detail, but not in spirit, this is in contradiction to the 

experimental data especially in the si dependence. Patience will prove 

valuable at this point. } We then write 

-$, ;3 = $ I 1 , 
md- .t / ,nl?- -t 2 
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No particular genius is needed to guess the T2_, n multiperipheral 

amplitudes (Fig. 5) 

a ,n q),++, + ,+p p,) = I - 

&” dl ’ * mc7- @Aa 
The real use of this production amplitude is not in the detailed 

calculation of the exclusive multiple differential cross section (although 

it had better not be too wildly wrong about that), but instead as an 

approximate amplitude to put into the 2 + 2 unitarity relation to evaluate 

the effect on the 2- 2 absorptive part from particle production. Recall 

that the basic peripheral absorptive part was zero. Now we generate 

such an absorptive part (and a non-trivial oT) from a model production 

amplitude whose major virtue, to repeat, is the built in damping in 

momentum transfer between produced particles. The unitarity relation 

in our normalization yields the two-to-two absorptive part 

A(s, t) = ImsT(s, t) as a sum over products of T2+n 

A b,tl = 2 I& [+) 
,?I;1 

(12) 

where (see Fig. 6) 
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A, Ll,t) = !zEi4 ,L 
a ?I! 1 

d& ;(+l,,;L) (i(,#J . . 
i&d3 

J4jJB c;I,n~-~$qn~) s 4 @A t/la - 2 p,) K 
@7C>” j-r 

and we have taken the common mass of the produced particles to be 

mo, pf = m‘. 
0 

The multiperipheral amplitudes inserted into the unitarity relation 

yield the multiperipheral model for A n 

A, la,*) - iad 3\ 

-- 

;;1 
i 

7c '"p, ~j7rlol-~~)o(pj.d') L 

21 hazy3 

xqJ/$+~R- $j) ($J" g 1 1 
j=I - .- 

n! i= ( ,&-Q” jy$c (p 2 
> 

t. 
(14) 

where the Qi and Q; are defined in Fig. 7. 

Clearly the A(s, t) = ImsT(s, t) will be non-zero from this proce- 

dure. This improvement on the elementary peripheral exchange will 

have to be fed back into the system later to generate an improved 



-9- NAL-Conf-73/59-THY 

peripheral model and, of course, an improved multiperipheral model, 

etc. (The faint of heart ought not embark on this easy to describe, 

challenging to complete iteration procedure ! We’ll discuss one iteration 

later. ) 

The key to success of thepresent and all multiperipheral models 

is that the simple structure of the assumed T 
2-n allows one to write a 

recursion relation for An (See Fig. 8);n? 2: 

A,, qw#p /&I +J = j d* t;(n,;yg qJ x 
&W 

Y 8 2 I I .- -A- 
ma-Q” fi$LQ’a 

(15) 

where 

/+-Q = /+y sQ’~ 

Summing on n yields under the integral. 

4 /q+)z nTL A.. = “$2 2 (w~;‘-/li) ,-t- 

(16) 
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If we call 

KQ4++ +J = ~x+n~-q3,+~3J”) cc~~,+p,),)) (i8) 

we may cast the integral equation for A(s, t) into the familiar and sugges- 

tive form 

~~p,~+g-+v~ii’) = ki~*+p,-+l+~~~) -+ 

h&4 , i 
qJ Kip~+[-(ii)+q’+gj) (go@(,ij )( 

x CT? ( @)B” (-.q) $R’) 1 

where Go(Q, Q’) is the free propagator 

Go ( Q, (;-?I) =. zmae qayhn~- qq :’ 

(18) 

(19) 

This is reminiscent of the Bethe-Salpeter equation derived in quantum 

field theory where K would be taken to be the two particle irreducible 

part. 

Generalizations of the very elementary multiperipheral model 

given here consist in essence of changes in K and Go. For example, K 

might be generalized to a distribution over the invariant energy carried 

through it and the masses of the legs 

K i/v ba+ j+ t))J r K Q,t~p) (+,-j,.,)“, /I;;“), (20) 
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and Go might be generalized to refer to propagation of spinning particles 

or perhaps Reggeons. 

Diagonalizing the Multiperipheral Integral Equation 

As it stands the equation for A(s, t) is easy in principle to solve 

because the phase space restrictions in the integrals truncate the 

iterative Neumann or Born series after a finite number of steps. We 

will be interested in the behavior of A(s, t) for large s and fixed t, 

however, and it proves very convenient to turn the truncating equation 

for A(s, t) into a serious integral equation for an integral transform of 

A which eliminates s in favor of its conjugate: the complex angular 

momentum. This turns (18) into a two dimensional equation for t # 0 

and a one dimensional equation at t = 0. 

We will consider the case t = 0. This has clear relevance for 

oT(s) and will be used in all our applications. Define variables by 

those appearing in Fig. 9. Then after some Jacobian activity one may 

write (18) as an equation over invariants 

x K: (a,, 21, /AI) cll LL; rLl;d ,I ) 

c *Ia- &)a 
2 
\ 

(24) 
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where 

1 -z 

B 1 

J4 (q ‘,‘((puI) ;; @Q)+/&j ;) l@T*-&l, ), (22) 

and L is just some lower bound on any invariant energy. U+ are 

complicated functions determined by the various phase space restrictions; 

for the record we record them here 

(23) 

Having changed variables we now m,ay eliminate all the s variables by 

defining the integral (Laplace)transforms 

s 

.d”, &-~mw-) AIs u ) 

La 

I’ IL’- J (24) 

.,a 

km, u, I?) = \i 
& e- [I-+r)lk$u, v) 

I( LJ, “, ‘LA ) 

where 

(-&JJ [,qp) =- .$I- U-L’- * 
a 6iz 

(25) 

(26) 
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It is convenient here to artifically take u and v to be negative and later, 

after solving for A @, u, v), continuitg by hand back to time like external 

momenta. 

Transforming (21) with elaborate care given to all limits of 

integration, we arrive at the bonafide one dimensional integral equation 

A rl?~u,v) -: K LQ.4, IT) --I- 
D 

’ .__--- - 3u’ 
I Ii,nYji+l) .-A;-;;‘” 

K LC;u, d) A I-f, <a; ,~lr), 
(27) 

For the particular inhomogeneous term we have been discussing above 

where 

K(+g,u,,L~) = “8” &j’-.A), 
(28) 

we have 

(29) 

y= -Y+u-v + n’qild)l4,V.) 
i I 

-1-I 
a&7 - o (30) 

Before examining the solution to Eq. (27) in some special cases, 

let’s review what we’ve done with our unbelievably clever integral 
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transform and see what we can expect from the solution to such an 

equation. The diagonalization procedure which eliminated the s 

variables leaving us an integral equation in momentum transfers or 

masses alone (the u or Q2 variables) is just a fancy trick for taking the 

ordinary partial wave amplitude in the channel where t (here zero) is the 

invariant energy and continuing the answer in the angular momentum 1. 

In general taking a partial wave projection reduces a four dimensional 

integral equation (Eq. 18) to a two dimensional integral equation as one 

integrates out the polar and azimuthal angle dependence on the t-channel. 

In the special case oft = 0 the partial wave corresponds to an O(4) 

projection rather than an O(3) projection and one has two polar angles and 

one azimuthal angle to integrate out; this takes a four dimensional 

equation, then we recover the full absorptive amplitude by Laplace 

inversion 

fl (j$, u), (31) 

where, as usual, Re c is to the right of any singularities in 1 . 

What might we expect for the analytic structure in 1 of an A(1 ,u,v) 

which satisfies Eq. (27)? Write it as a matrix equation in u,u’, v space 

A (1) T K 0) ,-I- -h(l) KO) 6, A Id, (32) 
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whose formal solution is 

(33) 

If (formally) (i- XKGo)-l develops a zero in 1 , then A(1 ) develops a 

pole in P . A pole in A(P) of the form 

/q Q‘) zz g /,&do ) 

leads to a behavior of A(s, u. v) of the form 

/q (4, u, 0) -‘v b’AdO ) 
,&?.->&9 

(34) 

(35) 

closing the P contour to the left about the pole at P = LY . More 
0 

complicated structures for A(1 ) give rise to extra log s factors in A(S). 

This is our first important result from the multiperipheral model. 

The elementary approximation to the production amplitude T2 _ n which 

leads to thekey recursion relation (15) can lead to power behavior in 

A(s, t = 0) which is quite different from the input behavior of the basic 

peripheral amplitude. The total cross section is 

CT (4) 4J YAdo-L 0 (36) 

{ The value of (Ye is determined as a function of g2 (or K in general) and 

can easily be non-integral. } This is the phenomenon of Regge behavior 

for 2+ 2 amplitudes which is a quite desirable property. Solving for 
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a0 is quite difficult in general (yea, probably impossible). 

Before we pass on to instructive special cases, let’s look again at 

the formal structure of (32). Suppose the “matrix” A(1 ) K(1 ) Go has a 

complete set of eigenvectors $n (1 , u) and associated eigenvalues ~~(1) 

0 
NJ.) \ da’ KLQ,u,~~) G,(.~~)~$J,Q,Q)~ G&$,[i,u), 

(37) 
-co 

and imagine the en are non-degenerate. 

Writing (as we may under certain conditions which I let the reader 

look up in his favorite books) A(1 , u, v) in the form 

and similarly for K (1 , u, v) 

K (ii, U) ,zr) = ,Tj 1, (1) ,qrn 11, u) .$q LO, d) 
,,n 

then 

(38) 

(39) 

(40) 

Suppose now the largest of the en(l), call it ol(l ),passes through one 
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for some value Q = aO. In the neighborhood of Q = a0 

o;-,iR) I- 1 + (i-d,) aIT;lJ)~ .t 

a.4 

,i i- di) 

and 

a, (,j) ,:~ ,L,Cd,) 

- o;‘la(,) (I- d6) 

,1 

and 

(41) 

(42) 

,!j(Q& : &ido> $; k&,U~'jl&$c-) (43) 

A?-& l 

We have assumed kl(ao) is non-singular to uo, which happens to be true 

for our model K(Q , u, v) Eq. (30). 

We have arrived at an additional very important piece of informa- 

tion. At a pole of A(Q , u, v) arising from the multiperipheral integral 

equation, the residue of the pole factorizes. Here into a product of a 

function of u and a function of v. This is actually quite a general 

property of Regge poles which follows from extended unitarity in the 

channel where the Regge pole is exchanged. So the apparatus we have 

set up yields (at t = 0) factorizable poles in complex angular rromentum. 

That is a general feature of whole classes of multiperipheral models 

and is, in a certain sense, the whole general context of the models. 

To see more of the detail which may be of interest let’s look at 

the special case m. = 0 of our elementary multiperipheral model. 
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The kernel function K(Q , u, v) becomes 

I((ii,Ih,u-1 

This simple kernel allows one to turn the integral equation for A into 

a differential equation which happens to be a hypergeometric equation. 

The important fact about the solution is the position of the leading pole 

in $ at 

d,(y”3 - -~$ + J;tT6Z * (4& 

Indeed there are only poles in Q trailing this leading pole by integer 

steps. 

Another case where one may solve the multiperipheral integral 

equation is for large m. in which situation the inhomogehous term K 

becomes to a good approximation separable. Indeed one finds that 

there are both a separable upper bound and a separable lower bound 

approximation to K 

K, IQq-4 t jq I,$ u-) 5 K, Li;u,,)1 
(47) 
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with 

K‘(j,U,V) = irp 
__ L-II 

I I 
;iz -;nc” t 

K, [&-) z ~@ c 

1 

,%I,” ,,*a I 
mo4 m;‘-a ti rn,S-J Lr 1- 

/fi- ) 

> 
(48) 

! 
(49) @ 

The multiperipheral equation with a separable kernel is very easy 

to solve. Suppose we have 

K ca,u,v) = j,iu) ti,h-) 
(50) 

as in the Ku or K 
L,. 

examples. Then 

fi ii, u,u-) = j-P ia) i,(v) +,akil’t,j 
, 1 

.ii.? tk~“~jJu’)fi@$~LJj 
-00 

and 

, 
-_I_ 

16r30tr) 
1” I # (52) 
j: 

The vanishing of the denominator gives rise to poles or more compli- 

cated structures in 1 . In the upper and lower bound examples we just 

gave, one finds tba t the zeroes of the denominator are given for KLby 
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and for 
“u 

~&r)lkd = sd F, (,gy4;J+,3 I-i+ (54) 
gp$ ;L 1 

where n = M”/ME . n should be a small quantity for the KL or Ku 

approximations to be valid. If M = Mv (pion exchange along the multi- 

peripheral chain) and MO = Mp (p production), then n = i/5 and one 

may solve (53) or (54) by expanding in n . 

The point of presenting these, often complicated, examples is to 

indicate that in general the position of the output pole is not a polynomial 

in gL but more involved. This has some physical consequences as we’ll 

soon see. In each example the leading pole as a function of g2 retreats 

to P = 1 at g2 = 0 

& I,f) t - 1 f 0 [ tP$+) e (55) 

The Regge pole output of these simplest multiperipheral equations 

predicts strict power behavior in s for two-to-two absorptive parts or 

total cross sections. In fact experimental evidence gathered at the 

CERN-ISR indicates that there are definite log s terms in oT. The 
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precise nature of these log pieces is at this writing still a matter of 

debate but their presence at all implies that the singularity structure in 

1 must be more elaborate than sets of simple poles. With this in mind 

we must eventually modify the elementary equations we have derived. 

If oT(s) is rising in s in a log s or (log s)’ fashion, then the P -plane 

structure will be a double pole or triple pole at 1 = +1. If the behavior 

is to approach a constant eT asymptotically 

r-j- cd ‘-la Q, +- b j ~ + c ’ fL-. (56) 

then there will be a pole with ao = 1 and cuts in 1 whose branch point at 

t=OisatRV =i. In each case the point 1 = + 1 is singled out for atten- 

tion. To reach P = + 1 from P = -1 where our multiperipheral models 

begin for small g2 means that the physics of high energy scattering 

demands a strong coupling solution-like our exact solutions-to those 

equations. 

Applications of the t = 0 Multiperipheral Model 

An interesting physical question one may address in the framework 

of our model is that of the behavior of the n-prong cross section o,(s) 
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i 

(57) 

o-, I.& = 2 o-i&L). 
x 

(58) 

For example, consider the first moment of the probability distribution 

qs)bTw 

(59) 

which one recognizes as the mean multiplicity of produced particles, fi?ie, 

c;-, Li) &I) = 5_ 71 o-$1,&) = L 2.x A, lA,O), 
?\rl L!P (4, m;, l&j 7P.J 

(60) 
Now 

0 

A,l,?,u,v-) = .-.i.-i- IbiVtl) 
(61) 

where 

A,, (1, ti, v) = s ‘zd e; “t”riid’ulv-;q (~ u y> 
n II 

La 

) 
(62) 

and the basic recursion relation (15) has been employed. It follows 
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that 

so\- ‘irz= I,a,~“,n-I / 

slLn~k,“,“)= .2{*Y.b%.z;, p) 
n- i 

,a-3 n~ir,U,ul>A..;;Ir:u:u) 
-00 

(64) 

(65) 

we have then 

c.+lw’ IP+IOl4u,d &JJu,u.) 
40 =ci$ $/$ \ n-r / /q jdjt=b) o I IL 

Suppose there is a pole in A (1 , u, v) at 1 = (Y : 

A[K;u,lA = pqdO(/~~~~ c 
(67) 

A(s, t = 0) behaves for large s as 
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/:](qTc) I-l/ p$ QKio! p/ 
4, $ Id, i4, lr) 

,& Gy<3 47 GiF (68) 

z /j I,&) pu-’ ,&I $0‘ 
(&7)@’ (6% 

While the numerator of (62) behaves as 

(70) 

The behavior of <n> is thus predicted to be 

(71) 

a result which depends crucially on there being a simple pole in P and 

on the recursion relation (15) becisely the same reasoning leads 

one to discover that 

(72) 

and so forth for the higher combinatorial moments 

(II h-l) In-k+1)> -T (14 l&.61 )- DjJko (73) 

This is an interesting result because it shows that the distribution 
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a,(s) at fixed s will look like a Poisson distribution as s - m, but only 

in a logarithmic fashion. To see this recall the form of a Poisson 

distribution 

-pq - e,.- tn) &? ,- Y 
3 ! 

Form the generating function 

G(,t) : 5 g p,_- evn) 

n=ti 

(74) 

and note that <n (n-l). . . . (n-k+l) > for this distribution is given by 

This is true as log s-m for the multiperipheral e n, but & then. 

Pursuing this slightly further, note that 

A ~a,-L4 = ; (p)” a, (4, t4 

for the multiperipheral models we have been discussing. Now ,~-- <N>= $14/iLa A 4 i=oj] /fl (s,~.=O) j 

cd 

and similarly for higher moments, But for large s 

A (4, t=d * 

$ ,4@ $A. 

. 

(77) 

(78) 

(79) 
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From our arithemetic on the Poisson distribution we see that only in 

the case that ruo(g2) is linear in g2 will we find a strict Poisson 

distribution. This is clearly not the case in the soluble examples we 
. 

discussed before since ao(g‘) has actually a complicated dependence on 

g2. So even though asymptotically we may look for a Poisson distribu- 

tion, at any finite energies the multiperipheral model leads one to 

expect sizeable deviations from the simple result. 
. 

The physics of this is easy to understand. When mo(g‘) is taken 

to be linear in g2, we are working in the weak coupling limit. In this 

g2+ 0 limit the production of any given particle becomes quite indepen- 

dent of the production of any other particle. This is precisely the 

circumstance under which one expects a Poisson distribution. Similar- 

ly as log s - m , the factorizablilty of the exchanges in the multiperi- 

pheral chain along with the ability to neglect masses and recoils from 

the production of an additional particle again lead to the statistical 

independence needed for a Poisson distribution. 

Another very interesting set of physical phenomena can be 

discussed with our knowledge of the t=O multiperipheral equation. 

Consider those processes in which one detects exactly one of themany 

(identical, spinless, etc) particles produced in our usual A+B collision 

and sums over the phase space of the rest. (Fig. 10) This defines 

the single particle inclusive cross section 
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E, &rowwLtX) = 

d"j% 

z2 j% *1.. G& r ); 
c 5 En (WI)! 

do-- Iiws-at;l+-+n) 
d3/&, . .- d”pn /En 

(80) 

From the multiperipheral point of view the produced particle can 

have come from one of two--more or less distinct--places in the 

production chain: (a) the ends or near the ends or (b) the middle or 

central region. 

Let’s look at the ends first. Squaring the amplitude in Fig. 10 we 

find that if the particle came off the end of the chain as in Fig. 11, then 

the inclusive crce s section is given by 

E, d2 = g” \ 
iqq iis (@-($2)” 

Al@~A3 1-49+JA,I) 

A’/2 14, al;, m;) 
(81) 

where A is the multiperipheral absorptive amplitude. 

The inclusive cross section depends on three variables. It is 

convenient to choose them as follows: define the longitudinal rapidity of 

any particle by 

Y 
IJ‘) Ii5 -& a1 

.-. E,t #,g; 
E,- +a i 3 j 

(82) 
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where p is the particle momentum along the beam direction 
11 

(longitudinal momentum) and Ei is the energy. The rapidity is the 

longitudinal boost angle taking the particle from rest to energy E.. 
1 

Now label every particle by its yi and its transverse momentum pTi. 

Phase space is simply 

G!! L- dl& d”+*; 

EL 

(83) 

The three variables we111 use for the inclusive cross section will be 

the over all rapidity in the center of mass system defined by 

P A= NmcdY, o,opLlAY) 
and 

p,= .M(IB(LE\y) O,O)di A I Y ) 

setting m = m A B=m. The energy s is 

d= qA~+jd2 = an2 (l-t- c&d, in) 
or 

A2 
w 

nt” e P 

for large s or Y. We parameterize pi by 

.j+= (ml-, @ii gi, kT,) 0, m-l LA $1, 

(84) 

(85) 

(86) 

(87) 

(88) 
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where 

“‘1 11 -/-, 

The momentum transfer Q2 in (81) is given by 

CI 
1 \ ” 1 = 4,,\- - .Llllr’l)\n CL%LI~\ c Y y , ) ) 

(89) 

(90) 

and as s (or Y) goes to infinity, it will remain finite if pT1 and the 

rapidity difference Y-y1 are held fixed. We, of course, want Q‘ to 

remain finite so that the multiperipheral assumptions apply. 

When p and Y-y1 are fixed, the invariant energy in the 
T-l 

absorptive part in (81) 

(+/J= i,++q +)I\ LLC 1 4 2 j 4;1y- ),(311Ti &I hut($-Y) > (91) 

also grows. We know from our previous work that A(Q+pB- (-Q)+p,) 

then behaves as 

(92) 

.w 
3 t’:< o 

c, 
~At~r,ivYt’jj.a ci,;) (93) 

In the limit then as Y (or s) becomes large, while pT1 and Y-y1 are 

fixed 
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Lb- 
@-$r, 

‘X @4yy+’ jQ (br,, U-g,) j,(,p>. 
(94) 

AB If we divide by oT (Y) which behaves as 

o-q%) ‘W &“‘)““-’ i/l I$) ifi (,/ld;l)) (95) 

then we expect 

I ch-&B-+~Lt)() -. :i,,, IA.,, U-u.) 

r-e(y) +, @p.r, -;e:-‘;3, “;j;lj;;jd” o (96) 

‘J I- 

as shown in Fig. 11. I.,~~i/ 

This result predicts that if we measure the momentum of the 

detected particle # 1 and let the incident energy in the collision increase 

holding pTi and Y-y1 fixed, then the ratio CT -; do/dyf d2pTi approaches 

a finite limit, regardless of the value of (1 
0’ 

There are two important 

features here which are general features of Regge pole exchange and do 

not rely in detail on the multiperipheral model: (a) The same value of 

the Regge intercept czo appears in cT and doldyid’ p TI because the 
(Y 

physics of multiparticle states which builds up (invariant energy) ’ 

behavior is the same whether or not we remove and detect one (or a 

finite number) selected particle. (b) Because the residue of the pole 

factorizes, the ratio in Eq. (96) is independent of particle B. 
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The range of rapidity yi which is available by energy momentum 

conservation is essentially 

-ys y, L: y (97) 

When yi = Y, the detected particle is more or less moving in the 

direction of particle A and is called a fragment of A. When yi= -Y, 

it is called a fragment of B. It should be clear that if we select 

particle 1 to have y1 + Y fixed, pTi fixed as Y- m, then a limit like 

(96) will hold with the names A and B switched. The limit (96) is known 

as the A fragmentation limit; the other “end of the chain” limit is the - 

B fragmentation limit. Each of these limits has been observed to occur 

in a large variety of particle collisions over energy ranges from 

s = 60(GeV)’ through NAL to the ISR at s = 3000 (GeXQ2; that is all ratios 

like (96) have been observed to become effectively independent of s. 

Our second kind of limit involves the detected particle coming 

from the center of the multiperipheral chain as in Fig. 12. The cross 

section for this is given by 

/p (4, n$, n,;) & = dQ, d4q, 
+&n ($L (if)” (h\K gj” 

RLp~+m+GL 

x 8ap(/J,+g,-Q,) .- A ip,+l&* pp a)L (98) 
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To keep particle 1 in the central region where (98) applies we 

must hold p T1 
and yi fixed as Y -+ m; that is, in rapidity space it must 

stay away from the ends. Holding p 
T1 

fixed keeps the momentum 

transfers Qz or Qz from growing and damping out the contribution we 

have selected. As Y-m with yt and p T1 fixed the energies in each of 

the absorptive parts in (98) grows and the inclusive cross section becomes 

(see Fig. 13) 

d cj- 
,G:, 

edo(~-yl) ,4CUi$,) 

~$pa/+, 
$1 ) t).r, ~a=A 

,au - j~l~~~@J/&$(99) 
) 

where gb,,) is some elaborate function depending on the details of the 

multiperipheral model but,because of factorization, not on particles 

A or B. Dividing by ocB(Y), Eq. (95), again we see 

i do- 
z3 

q% &Pj,rr t,,+, p;xerl 
j. &I 

(100) 

that is, it is independent of A and B of LYE and of yi: a very strong result 

indeed. 

If we now plot the distribution oil dai dyl d2 pT 1 in yf space we 

expect, for Y- m something like the shape in Fig. 14; namely, a yf 

dependence near the ends of phase space (or the multiperipheral chain) 

and yi independence in the middle. Indeed in pp collisions at the 
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CERN-ISR one sees essentially this shape with the central plateau 

becoming flatter and flatter as Y(or s) increases. Thus the elementary 

predictions of the multiperipheral idea seem experimentally verified. 

Let us draw one further consequence of our view of the inclusive 

process. By the definition in Eq. (80), if one integrates do/dyid2pT1 

over all of phase space, he finds 

s dy, da/v, d O- = <X,J r-GB (.a), Q, @p,r UO1) 
where <ni > is the multiplicity as a function of Y of particles of type 1 

produced in AB collisions. The appearance of <ni > is easy to under- 

stand since each time particle 1 occurs in the final state of an AB 

collision, it is counted as a contribution to the inclusive cross section. 

If a particle of type # 1 appears two, three,. . . times, that event is counted 

two, three,. . . times. 

If we do the integration in (101) using our results for 

1 
- Wdyid2 pT1 
o’T 

remembering that the distributions in p 
Ti 

are 

damped strongly, then we find 

<T,) = A'yt B' = Al!&p+ B (102) 

as before. The coefficient of the log s is now directly related to the 

height of the rapidity plateau. 

We will terminate our discussion of the multiperipheral model 
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with the mention of a number of interesting detailed topics which time 

does not allow us to cover. First, one can explore the very ends of the 

phase space in rapidity where the energy between particle 1 and any 

particle in the anything is so large that a Regge pole exchange rather than 

a simple particle propagator is expected. Then one will be looking at the 

generalization of Fig. 11 seen in Fig. 15 where the triple Reggeon 

formula is significant. Second, one may ask how the structure of the 

partial wave amplitude A(P , u,v) (for t = 0) is altered when Regge poles 

are exchanged along the sides of the multiperipheral chain. This leads 

to branch points in the 1 -plane. Making the model consistent in the sense 

of P -plane input equals P -plane output then becomes a non-trivial and 

thus far unsolved problem. We will hear more about this fl-om Professor 

Zachariasen at this sumne r school. Third, one may investigate within 

the framework we have established the rate at which the inclusive limits - 

in (96) and (100) are approached. This rate is governed by both the 

detailed dynamics of the model and the next leading trajectory intercept 

below oo. Fourth, one may address the significant problem of the 

magnitude of (I 
.O’ 

We have seen that in our simplest models co begins 

2 
as a function of g at P = -1, yet in the world of physics one needs aoz 1. 

Changing the basic particles building the multiperipheral chain into 

spinning objects or Reggeons allows one to get closer to cro = 1 to start 

with. Getting all the way has never been achieved. Finally, one may 

look at the structure of two or more particle inclusive processes to study 
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correlations among produced particles and to learn a more physically 

realistic version of the T 2-n production amplitude which is used in the 

unitarity relation to generate the model itself. 

It is possible at this time to end on a rather optimistic note about 

the multiperipheral model. The very high energy data from NAL and 

the CERN-ISR have remarkably served to confirm in detail the 

predictions of the model-even beyond the realistic expectations of 

multiperipheral enthusiasts. Accepting the general mode of thought here 

as correct then, one is strongly encouraged to refine and push the whole 

structure. 

III. PARTON MODELS 

The parton model is founded on the idea that a hadron is made up 

of point like constituents (partons) which, perhaps, are the quanta of a 

field theory underlying strong interactions. Of course, these quanta 

are not always individually observable since they interact strongly with 

each other, so that a description of hadrons in terms of them becomes 

significant when one can envision a physical situation which somehow 

emphasizes their point like nature. The natural and cleanest such 

situation occurs when one hits the hadron with a point like probe such as 

a photon or weak current “beam” and makes this probe on a time scale 

which is short relative to the interaction times of the partons themselves. 
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This is the case in deep inelastic lepton scattering as studied in the 

electron experiments at SLAC and the muon and neutrino experiments 

at NAL. We will begin our discussion of partons by recalling the 

salient features of those experiments. 

Inelastic lepton scattering is an inclusive experiment of the form 

lepton + proton + lepton + anything. In the approximation that the 

reaction takes place via one photon or one weak current exchange we 

have the kinematic stiuation seen in Fig. 16. The amplitude for this 

process is proportional to 

j: g*y) (x I LT; 6> I ji:\ 

where j’ is the’leptonic current 
a! 

%j*” = Gkj 5’ti ‘ilk 

for electromagnetism)and 

.j", = .:c,A, jd [ I - Y, \ ;u.~ 

(104) 

for weak transitions. The vector meson propagator D@(q2) connects 

the lepton current to the hadronic matrix element of the hadron current 

operator Ji (0). The guts of the process are in this matrix element 

since, up to higher order weak or electromagnetic corrections, we 

presume jz to be known. 
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Concentrate now on the electromagnetic case and work in the 

laboratory system of the target proton of momentum p 

P 
= (VI, cj, 0) 0 -~I) (106) 

and let the initial and final energy of the leptons be E and E a respectively. 

The momentum transfered to the hadrons is 

a 
(if 

Z -~ci EE’,&“Jj/;!, 

where 4 1s the angle through which the lepton is scattered. In this 

notation the cross section becomes 

where L 
4 

is a lepton spin tensor arising from a sum over all spin 

states of the leptons 

F tip = .R, $3 t l: 1, ._ J&q3 ,JJ' 

and the hadron structure function is 

‘hi.qj ix, .p = 
-y- d4$ $iy ,I’ i x s- 2.7-c cpiq-1 Ix~xlIjyp id I+> 

(407) 

(108) 

(109) 

(1*0) 
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with Ja the electromagnetic current. 

Current conservation allows us to write the structure function as 

w&p is, p> = [-g&q,+ @f) \ll, ‘4 “, x) + 
8” 

i/Q-- wqjp.- o&g lzi, If”i x! -ip 8” 
where x = -q’/+,* = v = E-E’ in the laboratory. The two 

structure functions Wi are related to the cross sections for absorption 

of transverse or longitudinal virtual photons by 

cTT Ix,@ = 4n”d c ! PlL’ -k p/J L&h $2, x) (412) 

and 

5L c X) S’“) = (~~~;y~) j-\4& + “‘““$ %$) (i13) 

The kinematics of this process established we may now proceed to 

model predictions for W1 and W 
2 e The picture given by the parton 

model is that the proton of momentum p moving along the z-axis 

/g = (&q7, cj Gi p> 

is composed of a bunch of consituents with momentum (see Fig. 17). 

I?; = i$u(+l&#+ I$ ’ ) krl ) k1; ), (115) 
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Each parton is presumed to have finite transverse momentum kT and 

it is convenient to scale its longitudinal momentum 

Clearly 

and 

k - g j,;-31 * P 

z. rL z: 0, 
L E 

(116) 

(118) 

If the frequency of the photon is verylarge (which in the laboratory 

means v = E-E’ is large), then the interaction time for the photon will 

be short compared to the “binding time” of the partons to make the 

proton, and we may imagine that the photon interacts individually with 

the partons. If we further let q2 become large then the momentum 

transfered to an individual parton will be so large that in order to make 

the sum over states in (110) be non-vanishing, the same m rton must 

re-emit the virtual photon. These two requirements: v large so the 

2 
individual parton or impulse approximation is suggested and q large so 

that the inelastic scattering process in coherent (Fig. 18) --these define 

a physical situation where one may expect to “view” partons. 

Under these circumstances we write 
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where P,(i) is the probability of finding in the proton N partons of 

momentum ki and other quantum numbers, and w ap (kip s) is the parton 

structure function. Since we envision the par-tons to be point-like, 

the w 
4 

are easy enough to evaluate. If the parton of mass pi and 

Qi has spin zero then 

q.yp &l,$) = ($a (;a&$( (aqp%/$- iB,+g12), 
(120) 

and if it carries spin 112 

~w~;(,~;,$) - (ii?& (& il?ppfJYp iA$ ydjx pi"- ix,+p), 
e 

(121) 

It is convenient to evaluate these in the frame where q is aligned alag 

the negative z-axis 

8 
‘Z 10, 0, O] hr-1; 8) 

In this frame 

(12.2) 

023) 

(124) 
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For spin0 partons we find 

and 

(12.6) 

for large q2, fixed x. This means 

w” (q9 -gy o we 
x Lwd 

and 

(127) 

+J 
N,, (128) 

This is our first example of scaling which is a general result of the 

parton model. A structure function which depends on two variables 

x and q2 becomes independent of q2 as -q2 -+ m and depends only on the 

dimensionless variable x = -q2/2p. q. In the spinless parton case the 

interesting ratio 

I? = qrT ~- 0 i-s”> 
(129) 

This last result is in flat contradiction with experimental results which 

2 are consistent with R small and possibly zero in the x fixed, -q -, m 

limit. 
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For spin 112 partons we find 

Y2 Q’xx = _- X~ o? ,sLv g‘) + 0 c ‘/-p-j) a 
and 

‘/2 
w,., = 0 p/-p) c 

This implies 

and 

,m )J \hf = tTL% w!J- ‘1iz -t 0 ( y) 

which leads to 

It= -J-TZ / 0 ( Y-a,) 

(130) 

(131) 

(132) 

(133) 

(134) 

which is in accord with the experimental results. 

Let us acquire a little perspective about our calculation which is, 

in a sense, at the very heart of the parton model and is its principal 

achievement. We have assumed that high frequency photons with a 

large q2 interact with the point like constituents of a hadron as if they 

are free. This led us directly to the result that dimensionless structure 

functions (Wt and v W2) become dependent on dimensionless quantities 

(like x) only, as -q2 -, CO . This makes a great deal of sense because 
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in a free theory the only scales around are masses and possibly coupl- 

ings. As momenta become infinite masses, at least, outht to be 

negligible and the scale of any function ought to be set by appropriate 

powers of those large momenta. Choosing dimensionless structure 

functions ought to lead to dependence ondimensionless variables only. 

This argument is false in an interacting field theory because the renor- 

malization procedure introduces a mass scale which cannot be tossed 

away and “anomalous” dimensions may result. By assuming the 

relevance of a free field theory, we have guaranteed a scale invariant 

set of results. 

Now experiments seem to so far bear out the scale invariant 

behavior of WI and vW2 and the possibility that R is zero or small. 

This leads one to guess that all partons have spin i/2- or more precisely 

all partons interacting with the electromagnetic current have spin I/2. 

The probability density to find a parton with (longitudinal) momen- 

tum in a certain piece of x space is directly related to W2. Phase space 

is 

fql”. : da/& 

2 X 

for large p, so the probability f(x) that a parton is in x to x + dx is 

X r P,[i)Q;7x(x-&-j: j[x, = 911,> ) 

i) ill 

(135) 

(136) 
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that is 

hi ‘)nl) k& Ix,$] = xpx>* -p &.J 

The total number of (charged) partons is 

1 kx px, = 1’9 EJ,y), 
0 0 

where we have called 

j& ?nv w&, f”> = 6 (x) 
,-$3y‘$ 

k 
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(137) 

(138) 

(139) 

and noted that physical phase space involves 0 5 x 5 1. The experimen- 

tal shape of F2(x) is indicated in Fig. 20. Near X = 1, very fast partons, 

f(x) = (*-x)~ while for slow partons f(x) seems to behave as f/x which, 

if correct, would mean that in a proton at infinite momentum there are 

a logarithmically infinite number of partons. 

One can now apply the basic parton idea to many processes. We 

shall pass this up and refer the reader to the references and instead 

discuss some of the consequences of the very attractive idea that the 

spin 1/2 partons are noneother than the quarks of Gell-Mann and Zweig. 

One is immediately faced with the logical probelm that if partons (quarks) 

are constituents of hadrons, how it it that they do not escape from hadrons 

on being struck so violently in inelastic lepton scattering? Since no one 

has ever seen a quark, they had better stay in. Well, no one knows! 

But we’ll simply shove this problem under the rug and ignore it. 
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are Srue, 
If the various consequences of assuming partons are quarks,, one must 

reopen the issue. 

So we imagine that there are densities u(x), d(x), and s(x) for 

finding up (Q = 2/3, S = 0), down (Q =-i/3, S=O) and strange (Q = i/3, 

S= -1) quarks in the proton and similarly anti-quarks. The charge on a 

proton being one means 

I 

I= 1 dx {~$ (~~(x-~(O)) ;,i (did -&d) -$ idid-zb)~j I 

a 

(140) 

while conservation of isospin means 

+=\u i,c I 0 ;x -!- ulx - illx)) - $ (&xMx)) j ) 
and the absence of strangeness means 

{;, { AIX) -zq =lJ 

(141) 

(142) 

The structure function for electron scattering on protons I S 

2nd iq ix) _ j’ix) zz 
x 1 

g ( y,&) + U(x)) -I- $ (did tdixl) ‘6 m Gild) ) 
(143) 
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and on neutrons 

ien _ $ {tulx)+ uln)J -t- .+ ~{ dlx) + cliX)( ++- j!f~(~)+ZNjl 

(144) 

since ups and downs change from proton to neutron. This gives us a 

first result, namely 

42 
F,eriXJ 

/ 
> 1 

FyYx) - 4 (145) 

if the quark parton model is correct. The experimental evidence is 

consistent with these bounds, and the ratio seems to be very close to 

i/4 near x = 1. Unfortunately thatis just the region where separation of 

the neutron structure functions from deuterium has ths largest ambiguity. 

But the model seems OK. 

Another consequence for our choice of par-tons comes from 

momentum conservation which says that if charged quarks carry aA the 

momentum of the proton, then 

J-= $4, x { uix~)+u(x) -I- dbM-lx) e &lx) tax) j 

0 

From the experimental shape of fep(x) and fen(x), one has 

ghx x $“Vxl = s,r$ ~ 
0 

(146) 

(147) 
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(‘[ ) x pyeh(x dx= cl,/3 

0 

Combining these one finds 

six x {>&ix) + Z(x)] = O,f~~ 
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(148) 

(1491 
0 

which would mean that over 70% of the proton momentum is carried by 

strange charged quarks. The conclusion obviously is that there is 

present in the proton a large amount of uncharged partonic matter and 

that most of the protonls momentum is stashed there. 

Now we will end the discussion of partons by saying a few words 

about neutrino induced inelastic reactions and derive some sum rules 

which test the quark parton idea. 

Inelastic neutrino scattering on a nucleon is the inclusive process 

“1 f Nd P + anything. The structure functions involved here are three 

in number and are given by the tensor structure 

\‘1’&&,$ - --&JJv, Iga,Xb j+ Y&;d 
-iE~ Jcp(yt fy’ 1% ig”,da 

(1501 

The new function enters because of vector-axial vector interference 

terms in the weak cross section. The differential cross section for 

incident neutrinos is given in terms of the Wi by 
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&J- (v.+7 i!+~fl&y) = c,,” 21 E { “$2 F” (q) + -~ 
dxd u 

1 
73 

d 

(l-y - 9%) $x,p) - XJ G 

aE 

I- ;r/d g cx, $“>f, 

where y = v/E, E is the incident neutrino energy, GF is the Fermi 

coupling constant, and 

g cx, $9 F nzl; \J& k$“~), 

and 

(152) 

(153) 

(154) 

These functions Fi(x,q2) are the combinations of v and the Wi 

which both naive dimensional arguments and the kindergarten parton 

model we have outlined would suggest satisfy the Bjorken scaling 

hypothesis 

(155) 

where the Fi(x) are non-vanishing functions of x. If this scaling occurs, 

then integrating over x and y in (151) to get the total neutrino proton 

cross section one finds 

(456) 
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that is, the cross section rises linearly with the incident neutrino 

energy. The latest data from CERN indicates that this linear rise is 

in fact consistent though not compelling. They find for 2 GeV 5 E 5 10 GeV 

l&,(E) =~ G,34 (E in Cj,eV)~,o-~~‘ci~~~ 
(157) 

and for anti-neutrinos (change the sign of F3) the data are consistent 

with 

(y$ (E) z G&j [Em C;eL’h-3Xc,~2u 
(158) 

So the indications are, so far, that scaling works even at the remark- 

ably low q2 values available in present experiments. 

Now wet11 proceed again as if the partons were quarks and derive 

some sum rules to be checked by further neutrino data from CERN and 

NAL. Using our assignments of quantum numbers for the quarks the 

weak current is written 

with a c the Cabbibo angle presumed to be the same for quark-partons as 

other hadrons. Using this current leads to 

5 (x) + d Ix) lluQQc. + dd .&8i;r12 & ,) 
(160) 

(161) 
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d lx) -I ii lx) QkA.9‘. + &khli,,%!l~ 
(163) 

and many more. 

From these follow 

sh, @I”‘- g;p, -- gj, -co3a’ip, 2 _2. (164) 

which is the old Adler neutrino sum rule which is not testing the quark 

model. A sum rule which does test the quark model is 

!A q+ g*-J = -2 (1 +ac&&JJ ̂ - 6 (165) 

and there are others. Experimental data to check these sum rules is 

not yet extant. 

The parton model is presented here is a very simple idea with 

really a small number of consequences. One can apply the model to a 

host of other processes involving currents such as e+e-+ hadrons or 

pp- p+p-+ anything, but the tests of the results of such applications 

are still being carried out. With additional assumptions, particularly 

on the manner in which quark-partons somehow transmute themselves 

into hadrons without transmitting their curious and unobserved quantum 

numbers to the external world, one may derive parton model results 

which relate to strong interaction processes alone. A realm of 

particular interest of late has been inclusive processes at large trans- 

verse momentum. It is possible that the guts of this reaction involves 
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some kind of basic parton -parton interaction which is only gently sh 

shielded as the partons transmute to hadrons. This topic and others 

involving detailed applications to current-hadron interactions I leave 

to the reader of the references. 
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Multiperipheral kinematics for the 2-n amplitude. 

The n particle contribution to the s-channel 

unitarity relation. 

Multiperipheral contribution to the n-particle 

s-channel unitarity relation. 

Multiperipheral recursion relation. 

Kinematics for the multiperipheral integral 

equation. 

Single particle inclusive process. 

The A fragmentation region in the multiperipheral 

model. 

The multiperipheral contribution to the central 

region of rapidity space. 

Reggeons replacing the multiperipheral 

absorptive parts in Fig. 12. 

Prediction of the multiperipheral model for the 
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Fig. 15 

Fig. 16 

Fig. 17 

Fig. 18 

Fig. 19 

Fig. 20 

distribution in rapidity for a single particle 

inclusive reaction. Shown in the center of 

mass frame. 

Triple-Regge diagram for the single particle 

inclusive reaction at the edge of physical 

phase space. 

Kinematics of deep inelastic electron scattering. 

A proton of momentum p and its partons of 

momentum k.. 
1 

Electroproduction in the parton model showing 

the coherent interaction of the virtual photon 

with an individual parton. 

The photon-parton structure function W Cyp(kiq). 

The structure function vW2 in the scaling limit. 

This is a casual representation of the experi- 

mental data. 
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